

Document downloaded from:

This paper must be cited as:

The final publication is available at

Copyright

Additional Information

http://doi.org/10.1016/j.chemolab.2013.06.003

http://hdl.handle.net/10251/88147

Elsevier

Arteaga Moreno, FJ.; Ferrer, A. (2103). Building covariance matrices with the desired
structure. Chemometrics and Intelligent Laboratory Systems. 127:80-88.
doi:10.1016/j.chemolab.2013.06.003.

1

Building covariance matrices with the desired structure
Francisco Arteagaa* and Alberto Ferrerb

a. Universidad Católica de Valencia San Vicente Mártir. Departamento de Contabilidad, Finanzas y
Control de Gestión. C/ Jorge Juan 18, 46004, Valencia, Spain (francisco.arteaga@ucv.es)

b. Universitat Politècnica de València. Departamento de Estadística e Investigación Operativa Aplicadas
y Calidad. Camino de Vera s/n, Edificio 7A, 46022, Valencia, Spain (aferrer@eio.upv.es)

*	Corresponding	author.			

Keywords

Covariances; simulation

Abstract

The problem of building a covariance matrix by fixing their diagonal values (variances)
and all or a subset of its eigenvalues has been solved in different ways in the literature.
In this paper we propose an iterative heuristic method to build such covariance matrix
when a subset of its covariances is also chosen from the user. This provides a more
flexible approach than those available in the literature for designing covariances
matrices with the desired structure. As in other related approaches, the proposal can be
useful for testing the performance of chemometric methods with data sets matching the
theoretical conditions for their applicability or checking their robustness when the
hypothesized properties fail.

1. Introduction

In a related paper, Arteaga and Ferrer [1] propose a singular value decomposition
(SVD) based method with two approaches to simulate N by K multivariate normal data
sets with a desired correlation structure, the approach 1 and approach 2, respectively.
In approach 1 the user specifies the desired covariance matrix (that can be singular),
yielding a data set with a sample covariance matrix exactly matching the specified by
the user. This can be seen as an alternative to the popular Cholesky decomposition
approach [2]. In approach 2 the user specifies the correlation structure by fixing a
subset of the eigenvalues of the covariance matrix and the variances for the variables of
the data set, yielding a column-wise centred data set. This resultant data set verifies that
the sample covariance matrix has the desired variances and eigenvalues. An iterative
heuristic method that uses an initial random matrix data set X is used. The role of matrix
X is to assure a feasible covariance matrix ܁ ൌ ܆୘܆ ሺܰ െ 1ሻ⁄ .

The problem of building a correlation matrix with specified eigenvalues has a popular
solution: the Bendel and Mickey algorithm [3,4] (Bendel and Mickey, 1978; Lin and
Bendel, 1985). This algorithm takes a matrix having the specified eigenvalues and uses
a finite sequence of rotations to introduce 1’s on the diagonal.

In this paper we propose a new iterative algorithm to build covariance matrices not only
by fixing their variances and eigenvalues (as in Arteaga & Ferrer’s approach 2 [1] but
also a subset of their covariances as in the so-called completion problem [5]. The
method also handles null eigenvalues, yielding singular covariance matrices. This
increases the flexibility of the user when designing covariance matrices. The method is
deterministic if the user defines a symmetric seed matrix S and the complete set of the
eigenvalues; otherwise, if the user employs a randomly generated symmetric seed
matrix, or some of the eigenvalues remain unfixed, the method becomes stochastic.

2

The paper is organized as follows: Section 2 introduces the proposed algorithm; in
Section 3 its performance is illustrated with several examples; in section 4 some
conclusions are drawn. The commented MatLab code for the algorithm is detailed in the
Appendix.

2. The algorithm

Let ൛ݒ௝ൟ௝ୀଵ,…,௄ be the pre-specified variances for the K variables, ൛ܿ௜௝ൟ the fixed subset

of covariances and ሼߣ௔ሽ௔ୀଵ,…,஺ the desired subset of A eigenvalues (note that some of
them can be zeros), with ܣ ൑ ∑ and ,ܭ ௔஺ߣ

௔ୀଵ ൑ ∑ ௝ݒ
௄
௝ୀଵ . The remaining ܭ െ ܣ

eigenvalues can be generated as random non-negative values that sum ∑ ௝ݒ
௄
௝ୀଵ െ

∑ ௔஺ߣ
௔ୀଵ (in this case the algorithm becomes stochastic). Note that if ܭ ൒ ܰ, no more

than ܰ െ 1 non-null eigenvalues should be specified. It must be noted also that, when
we combine the fixed eigenvalues with those randomly generated, the K eigenvalues
must be sorted in descending order, and the position for each non-null fixed eigenvalue
must be recorded for tracking purposes, because the convergence is attained in terms of
the fixed covariances and the fixed eigenvalues.

Let L be a diagonal K by K matrix with diagonal values equal to the eigenvalues, in
descending order, i.e. ݈௔,௔ ൌ ௔, and let r be the desired rank for S. The proposedߣ
algorithm is outlined in the following:

Step 0: define S as an arbitrary symmetric K by K seed matrix.

Step 1: define V as the first r eigenvectors of S.

Step 2: replace S by ܁ ൌ .୘܄ۺ܄

Step 3: scale S to have the desired variances.

Step 4: replace the ൛ݏ௜௝ൟ values of matrix S with the ൛ܿ௜௝ൟ desired covariances.

Step 5: if S has negative eigenvalues, replace them with their absolute value and scale
S to have the desired variances.

Step 6: repeat steps 1 to 5 until convergence on the desired eigenvalues and
covariances.

In step 0 S can be either specified by the user or randomly generated. Note that, if all
eigenvalues are fixed, the resultant covariance matrix is completely determined by the
initial S. This is not true if a subset of the eigenvalues remain unfixed because they are
randomly generated.

In step 2 the eigenvectors of the current S matrix are combined with the desired
eigenvalues. Let 1n be the number of non-null fixed eigenvalues. If ݊ଵ ൏ the ݊ଵ fixed ,ݎ
eigenvalues replace the corresponding eigenvalues of the current S matrix (remember
that their positions have been recorded); the remaining ݎ െ ݊ଵ non-null eigenvalues of S
are re-scaled to assure they sum up the part of the total variance not explained by the
previously ݊ଵ fixed non-null eigenvalues. In this step S is constrained to have the
desired eigenvalues.

In step 3 the current covariance matrix is scaled by multiplying each of its ൛ݏ௜௝ൟ values

with the weighting factor ඥݒ௜ݒ௝ ⁄௝௝ݏ௜௜ݏ . This guaranties the desired variances for S, at
the expense of changing the desired eigenvalues.

3

In step 4 S is constrained to have the desired covariances; consequently, the eigenvalues
and the variances change.

The imputed covariances in Step 4 can lead us to an invalid covariance matrix, with
negative eigenvalues. If this is the case, in Step 5 the negative eigenvalues are replaced
by their absolute value, and S is scaled to have the desired variances.

The iterative nature of this approach allows that, at each iteration, if the algorithm
converges, the differences between the desired and obtained eigenvalues and
covariances are smaller (note that step 4 guaranties the variances). If this is the case, the
matrix S in step 6 will converge to a matrix matching the desired variances, eigenvalues
and covariances.

In our implementation, the algorithm converges when for each fixed covariance ܿ௜௝, the

current S matrix satisfies ൫ܿ௜௝ െ ௜௝൯ݏ
ଶ
൏ 10ିଵ଴, and for each fixed eigenvalue	݈௔ there is

an eigenvalue ߣ௔	in S such that ሺߣ௔ െ ݈௔ሻଶ ൏ 10ିଵ଴. This tolerance threshold
(10ିଵ଴ሻ	may be modified by the user.

Figure 1 illustrates this algorithm.

Figure 1. Schedule for the algorithm to build a covariance matrix with pre-specified variances,
eigenvalues and a fixed subset of covariances.

{vj} the desired variances for the
K variables, and {cij} the desired

covariances

L the diagonal matrix with la,a = la the
desired eigenvalues, in descending order.

r the desired rank for S.

S an arbitrary
symmetric K by K

seed matrix

convergence on
eigenvalues and

covariances

No

V the first r eigenvectors of S

replace in S the sij values with the
{cij} desired covariances

Yes

TVLVS 

STOP

scale S to have the desired variances
jjii

ji
ij

new
ij ss

vv
ss 

S has negative
eigenvalues

No

replace the λi<0 by ‒λi and scale
S to have the desired variances

Yes

4

For convergence, only the desired covariances and eigenvalues have to be surveyed.
Note that for tracking the non-null eigenvalues at each iteration we need to know their
positions along the K eigenvalues (the null fixed eigenvalues being the last ones).

This algorithm performs well for variances and a subset of the covariances, or for
variances and a subset of the eigenvalues, but when the variances, a subset of the
eigenvalues, and a subset of the covariances are fixed, convergence problems may arise.

It must be noted that some combinations of variances, covariances, and eigenvalues may
be unfeasible, that is, there is no covariance matrix satisfying those restrictions, and the
algorithm fails to converge. Kurowicka and Cooke [5] show that an incomplete
covariance matrix can be filled out when all partial correlations that can be calculated
from the variances and the known covariances of the incomplete covariance matrix
belong to (-1, 1). The problem is that when some of the eigenvalues are constrained,
Kurowicka and Cooke’s method may not be useful to guarantee a feasible covariance
matrix.

The MatLab code for this new algorithm (the sbuild function) is given in Appendix A.

3. Examples

In this section the algorithm’s performance is illustrated by using some examples. The
MatLab command is S=sbuild(K,eig,var,co,S0), where S is the resultant
covariance matrix, K is the number of variables, eig is a row vector with the desired
eigenvalues (this can be [] when no eigenvalues are fixed), var is a row vector with the
desired variances (if var is set to 0 all the variances are 1’s), co provides the desired
covariances (this can be []), S0 is the seed covariance matrix (this can be []).

3.1. Two correlation matrices with the same specified structure

Two different 5 by 5 correlation matrices with rank 4, with fixed eigenvalues {2.5, 1.0}
and with fixed covariances ሼݏଵଶ ൌ 0.5, ଵଷݏ ൌ െ0.5, ଶସݏ ൌ 0.3, ଷହݏ ൌ െ0.7, ሽ are
simulated. Both covariance matrices are shown in Table 1. For the first case the
algorithm took 46 iterations to converge, while for the second case 29 iterations were
needed.

The MatLab command for both covariance matrices is:

S=sbuild(5,[2.5 1 0],0,[1 2 .5;1 3 -.5;2 4 .3;3 5 -.7],[])

Table 1. Two different simulated covariance matrices with fixed variances, some fixed correlations and
some fixed eigenvalues. Fixed values are in bold emphasis.

 X1 X2 X3 X4 X5 X1 X2 X3 X4 X5
X1 1.0000 0.5000 -0.5000 0.2172 0.2249 X1 1.0000 0.5000 -0.5000 -0.2122 0.0004
X2 0.5000 1.0000 -0.2456 0.3000 0.2729 X2 0.5000 1.0000 -0.6367 0.3000 0.5449
X3 -0.5000 -0.2456 1.0000 -0.6427 -0.7000 X3 -0.5000 -0.6367 1.0000 0.0842 -0.7000
X4 0.2172 0.3000 -0.6427 1.0000 0.0233 X4 -0.2122 0.3000 0.0842 1.0000 -0.2858
X5 0.2249 0.2729 -0.7000 0.0233 1.0000 X5 0.0004 0.5449 -0.7000 -0.2858 1.0000

 λ1 λ2 λ3 λ4 λ5 λ1 λ2 λ3 λ4 λ5
 2.5000 1.0000 0.9465 0.5535 0.0000 2.5000 1.2281 1.0000 0.2719 0.0000

3.2. A covariance matrix that contains some pre-specified submatrices

A 9 by 9 correlation matrix with rank 6, with an eigenvalue equals to 1.0, that
incorporates three 3 by 3 correlation matrices, S1, S2 and S3 as shown in Figure 2, is
simulated.

5

Figure 2. A 9 by 9 matrix that incorporates three 3 by 3 correlation matrices.

If ܁ଵ ൌ ൥
1 0.5 0.4
0.5 1 0.7
0.4 0.7 1

൩, ܁ଶ ൌ ൥
1 0.5 െ0.4
0.5 1 െ0.7
െ0.4 െ0.7 1

൩ and ܁ଷ ൌ ൥
1 െ0.5 0.4

െ0.5 1 െ0.7
0.4 െ0.7 1

൩,

co=[1 2 .5;1 3 .4;2 3 .7;4 5 .5;4 6 -.4;5 6 -.7;7 8 -.5;7 9 .4;8 9 -
.7] and the MatLab command is S=sbuild(9,[1 0 0 0],0,co,[]), the resultant
correlation matrix, obtained after 36 iterations, is shown in Table 2.

Table 2. A full rank 9 by 9 correlation matrix that incorporates three 3 by 3 correlation matrices. Fixed
values are in bold emphasis.

 X1 X2 X3 X4 X5 X6 X7 X8 X9

X1 1.0000 0.5000 0.4000 0.0677 0.4031 0.0249 0.2568 -0.1873 -0.3047
X2 0.5000 1.0000 0.7000 -0.3362 -0.0092 0.2583 -0.0470 -0.1841 0.0141
X3 0.4000 0.7000 1.0000 -0.1222 -0.1409 -0.0770 0.1102 0.0845 0.1669
X4 0.0677 -0.3362 -0.1222 1.0000 0.5000 -0.4000 0.8028 -0.0817 -0.0194
X5 0.4031 -0.0092 -0.1409 0.5000 1.0000 -0.7000 0.3009 -0.3502 -0.1620
X6 0.0249 0.2583 -0.0770 -0.4000 -0.7000 1.0000 -0.0466 -0.0819 0.0594
X7 0.2568 -0.0470 0.1102 0.8028 0.3009 -0.0466 1.0000 -0.5000 0.4000
X8 -0.1873 -0.1841 0.0845 -0.0817 -0.3502 -0.0819 -0.5000 1.0000 -0.7000
X9 -0.3047 0.0141 0.1669 -0.0194 -0.1620 0.0594 0.4000 -0.7000 1.0000
 λ1 λ2 λ3 λ4 λ5 λ6 λ7 λ8 λ9
 2.6740 2.2173 1.8601 1.0000 0.9646 0.2840 0.0000 0.0000 0.0000

3.3. A correlation matrix with a highly restricted structure

In this example a full rank 5 by 5 correlation matrix, with fixed eigenvalues {2.0, 1.5}
and with fixed covariances ሼݏଵଶ ൌ ଶଷݏ ൌ ଷସݏ ൌ ସହݏ ൌ ଵସݏ ൌ ଶହݏ ൌ 0.0ሽ is simulated.
The resultant correlation matrix, obtained after 31 iterations, is shown in Table 3.

Table 3. A full rank 5 by 5 correlation matrix with fixed variances, some fixed correlations and some
fixed eigenvalues. Fixed values are in bold emphasis.

 X1 X2 X3 X4 X5
X1 1.0000 0.0000 0.7813 0.0000 -0.5037
X2 0.0000 1.0000 0.0000 0.5000 0.0000
X3 0.7813 0.0000 1.0000 0.0000 -0.1457
X4 0.0000 0.5000 0.0000 1.0000 0.0000
X5 -0.5037 0.0000 -0.1457 0.0000 1.0000

 λ1 λ2 λ3 λ4 λ5
 2.0000 1.5000 0.8678 0.5000 0.1322

3.4. Retrieving the raw data in a PLS Path Modelling application

In PLS Path Modeling applications [6,7] a data set X with N rows (objects) and K
columns (variables named indicators) is arranged in B blocks X1, X2, …, XB, with K1,
K2, …, KB indicators, respectively, being ܭ ൌ ∑ ௕ܭ

஻
௕ୀଵ .

Each one of the B blocks of indicators, Xb, is a scale for measuring, in an indirect
manner, a latent variable (i.e. a construct) named tb. For this example, let us assume that

S1

S2

S3

6

each Xb can be expressed as ܆௕ ൌ ௕ܘ௕ܜ
୘ ൅ ۳௕, that is, each one of the indicators of the

bth block is a reflect of their latent variable tb (this is the so-called reflective way).

We assume that there are causal relationships among the constructs, reflected in the so-
called structural model. In Figure 3 a simple example with three constructs with four,
four and two indicators, respectively, is shown. Raw data are available for this example
in a Gefen and Straub’s work [8].

Figure 3. Structural model for the Gefen and Straub’s example

The estimation of a PLS Path Model is determined by the K by K correlation matrix for
the indicators ܁ ൌ ܆୘܆ ሺܰ െ 1ሻ⁄ , but this is not often published in literature. Therefore,
potential readers cannot replicate the estimation nor fit alternative PLS path models [9].
However, researchers often publish: i) the between constructs correlations ۿ ൌ
܂୘܂ ሺܰ െ 1ሻ⁄ , where ܂ ൌ ሾܜଵ	ܜଶ ஻ሿ, ii) the correlations between each construct andܜ	⋯
their indicators: the loadings ܆௕

୘ܜ௕ ሺܰ െ 1ሻ⁄ , and iii) the correlations between each
indicator and the other constructs: the cross-loadings ܆௕

୘ܜ௖ ሺܰ െ 1ሻ⁄ , ܾ ് ܿ. If we call L
the matrix that groups the loadings and the cross-loadings, i.e. ۺ ൌ ܂୘܆ ሺܰ െ 1ሻ⁄ , we
obtain the following correlation matrix:

܀ ൌ
൤܆

୘

୘܂
൨ ሾ܆ ሿ܂

ܰ െ 1
ൌ ൤

܁ ۺ
୘ۺ ൨ۿ

This correlation matrix is incomplete because the correlations between the indicators,
grouped in S, are usually not provided in papers [9]. In the case of the Gefen and
Straub’s example, the structure of the correlation matrix R is shown in Figure 4.

Figure 4. Correlation matrix (indicators plus constructs) for the Gefen and Straub’s example.

As we have an incomplete correlation matrix, we can use the sbuild function to build a
complete correlation matrix that matches the known correlations. Due to the strong
dependence between the indicators and the constructs (each Xb block of variables
associated to the tb construct is essentially one-dimensional) and the fact that we know
the correlations between the constructs (the Q matrix), it is expected that the estimated
K by K indicators correlation submatrix, ܁෠, is an accurate approximation of the
unknown correlation matrix S. If we re-estimate the model, from ܁෠, and compare our

t1

t2

t3

X1

X2

X3

X4

X5

X6

X7

X8

X9

X10

1 10 1 3
1

10
1

3

Indicators correlations

Unknown

Indicator to
construct

correlations

Known

Construct to indicator
correlations

Known

Constructs
correlations

Known

7

results with the published ones, we can measure how accurate our estimation is and, if
this is the case, we can estimate alternative PLS path models as if we would have got
the original data.

Tables 4, 5 and 6 show the S matrix for the Gefen and Straub’s example, the loadings
and cross-loadings matrix L after the estimation of the PLS path model from Figure 3,
and the constructs correlation matrix, Q, respectively.

Table 4. Unpublished indicators correlation matrix S for the Gefen and Straub’s example.
 X1 X2 X3 X4 X5 X6 X7 X8 X9 X10
X1 1 0.5160 0.6562 0.5503 0.3152 0.2586 0.3241 0.3688 0.1796 0.2510
X2 0.5160 1 0.6377 0.5794 0.2809 0.2486 0.3671 0.4001 0.1883 0.2373
X3 0.6562 0.6377 1 0.6438 0.1936 0.2014 0.3260 0.4226 0.1050 0.2491
X4 0.5503 0.5794 0.6438 1 0.4214 0.2752 0.4571 0.4332 0.1288 0.2470
X5 0.3152 0.2809 0.1936 0.4214 1 0.5911 0.6229 0.5426 0.2717 0.3235
X6 0.2586 0.2486 0.2014 0.2752 0.5911 1 0.5565 0.5570 0.1854 0.1385
X7 0.3241 0.3671 0.3260 0.4571 0.6229 0.5565 1 0.6771 0.3672 0.3467
X8 0.3688 0.4001 0.4226 0.4332 0.5426 0.5570 0.6771 1 0.3540 0.4006
X9 0.1796 0.1883 0.1050 0.1288 0.2717 0.1854 0.3672 0.3540 1 0.6343
X10 0.2510 0.2373 0.2491 0.2470 0.3235 0.1385 0.3467 0.4006 0.6343 1

Table 5. Published L matrix with the correlations among the indicators and the constructs for the Gefen
and Straub’s example (loadings, in bold, and cross-loadings).

 t1 t2 t3
X1 0.8085 0.3873 0.2399
X2 0.8171 0.4018 0.2366
X3 0.8677 0.3619 0.1994
X4 0.8464 0.4901 0.2108
X5 0.3714 0.8140 0.3304
X6 0.2974 0.7603 0.1780
X7 0.4471 0.8782 0.3943
X8 0.4875 0.8641 0.4185
X9 0.1806 0.3699 0.8945
X10 0.2948 0.3856 0.9130

Table 6. Published correlation matrix for the constructs, Q, for the Gefen and Straub’s example.
t1 t2 t3

t1 1 0.4968 0.2658
t2 0.4968 1 0.4182
t3 0.2658 0.4182 1

The MatLab command is now R=sbuild(13,[],0,co,[]), with co=[1 11 .8085;1
12 .3873; … ;10 13 .9130;11 12 .4968;11 13 .2658;12 13 .4182]. Table 7
shows the 10 by 10 estimated submatrix ܁෠ associated to the indicators, extracted from
matrix R.

Table 7. Estimated indicators correlation matrix ܁ො for the Gefen and Straub’s example.
X1 X2 X3 X4 X5 X6 X7 X8 X9 X10

X1 1 0.6533 0.5751 0.5661 0.2483 0.3208 0.2508 0.4145 0.3325 0.1481
X2 0.6533 1 0.5627 0.5542 0.1901 0.2984 0.4238 0.3846 0.1488 0.3211
X3 0.5751 0.5627 1 0.6903 0.3710 0.2512 0.3745 0.2819 0.0120 0.2423
X4 0.5661 0.5542 0.6903 1 0.4270 0.1648 0.4001 0.5026 0.1831 0.2210
X5 0.2483 0.1901 0.3710 0.4270 1 0.6119 0.6839 0.5324 0.2723 0.2181
X6 0.3208 0.2984 0.2512 0.1648 0.6119 1 0.6087 0.4895 0.2093 0.1270
X7 0.2508 0.4238 0.3745 0.4001 0.6839 0.6087 1 0.6606 0.2754 0.3850
X8 0.4145 0.3846 0.2819 0.5026 0.5324 0.4895 0.6606 1 0.3758 0.4544
X9 0.3325 0.1488 0.0120 0.1831 0.2723 0.2093 0.2754 0.3758 1 0.6687
X10 0.1481 0.3211 0.2423 0.2210 0.2181 0.1270 0.3850 0.4544 0.6687 1

8

The difference between S and ܁෠ should not be measured element-wise but by comparing
the resultant estimated models with S and ܁෠. In order to do so, we re-estimate the PLS
path model from ܁෠, yielding a new constructs correlation matrix ۿ෡ , shown in Table 8.

Table 8. Correlation matrix for the constructs for the Gefen and Straub’s example, from the estimated
indicators correlation matrix ܁ො.

t1 t2 t3
t1 1 0.4891 0.2651
t2 0.4891 1 0.4101
t3 0.2651 0.4110 1

By comparing Table 6 and Table 8, it is concluded that the between constructs
correlations matrices Q and ۿ෡ are quite similar.

The PLS path model estimation yields also the coefficients for the paths. In Table 9 we
compare these path coefficients from both models.

Table 9. Estimated coefficients for the Gefen and Straub’s example with both the original and the
estimated indicators correlation matrix.

From To Original Estimated
t1 t2 0.4968 0.4891
t1 t3 0.0771 0.0842
t2 t3 0.3799 0.3698

From Figure 3 we see that t2 and t3 are two endogenous constructs and in Table 10 we
compare their R2 from both models. Again we see that the model estimated from the
estimated indicators correlation matrix agrees with the original model.

Table 10. Estimated R2 coefficients for the endogenous constructs for the Gefen and Straub’s example
with both the original and the estimated indicators correlation matrix.

Original Estimated
t2 24.68% 23.92%
t3 17.93% 17.43%

The PLS path model estimated yields also other useful statistics (weights,
communalities, reliability measures, …) that researchers often publish. As a suitable
strategy, the sbuild function can be applied several times, say M, to achieve M estimated

indicators correlation matrices, ൛܁෠௠ൟ௠ୀଵ

ெ
, and choose among them the one that better

matches with the previously mentioned published statistics.

3.5. Simulating multi-phase data

Processes with several stages or phases, i.e. processes with dynamics of different order
and changes in the correlation structure among variables are quite common in practice.
The multi-stage nature of both batch and continuous processes can also be the result of
the different processing units and the distinguishable operations inside a unit. Even in
the same unit or stage of a batch process, the correlation structure and process dynamics
may change as the batch is being processed [10].

In this example a correlation matrix from a process with 3 phases (or stages) and 4
variables in each phase will be simulated. Let S1, S2 and S3 be the correlation matrices
for each of the 3 phases. Each Si is assumed to have an eigenvalue equals to 3 to assure
a strong relationships between the 4 variables in each phase. In this case sbuild function
is used to build a correlation matrix for the 12 variables resulting after arranging the 4
variables from each phase. The diagonal blocks S1, S2 and S3 are fixed in advance
letting the algorithm to obtain only the correlations out of the diagonal blocks. Table 11

9

shows the fixed correlation blocks for the multi-phase example storage in variable
co=[1 2 -.634; 1 3 .890;5 6 -.739;…;7 8 -.381;9 10 .587;…;11 12 -.739].

Table 11. Fixed correlations for the multi-phase example.

1 -0.634 0.890 -0.776
-0.634 1 -0.680 0.498
0.890 -0.680 1 -0.488
-0.776 0.498 -0.488 1
 1 -0.739 -0.791 0.378
 -0.739 1 0.831 -0.821
 -0.791 0.831 1 -0.381
 0.378 -0.821 -0.381 1
 1 0.587 -0.962 0.760
 0.587 1 -0.440 0.427
 -0.962 -0.440 1 -0.739
 0.760 0.427 -0.739 1

This procedure is run M times and, by averaging the resulting complete M correlation
matrices, the final desired S matrix is obtained. This is a correlation matrix (1212) with
3 diagonal blocks Si (44) matching the fixed values shown in Table 11 and with the
values out of the diagonal blocks close to 0 (i.e. they are averages of random correlation
values, ranging from -1 to 1). The largest the number M of simulated matrices the
closest to 0 the out of diagonal blocks correlations.

Table 12 shows the outcome from M=10 by using the following MatLab command:

S=zeros(12,12);for i=1:10,S=S+=sbuild(12,[],0,co,[]);end;S=S/10,with
variable co as specified before.

Table 12. Simulated multi-phase correlation matrix. Fixed values are in bold emphasis.

1 -0.634 0.890 -0.776 0.029 -0.008 -0.021 0.006 0.001 0.056 0.065 0.059
-0.634 1 -0.680 0.498 0.010 0.022 0.063 0.020 0.053 -0.068 -0.113 -0.005
0.890 -0.680 1 -0.488 0.025 0.049 0.007 -0.076 0.041 0.061 0.029 0.108
-0.776 0.498 -0.488 1 -0.074 0.061 0.094 -0.038 0.024 -0.066 -0.057 0.022
0.029 0.010 0.025 -0.074 1 -0.739 -0.791 0.378 0.018 0.003 0.041 -0.017
-0.008 0.022 0.049 0.061 -0.739 1 0.831 -0.821 -0.004 -0.009 -0.046 0.066
-0.021 0.063 0.007 0.094 -0.791 0.831 1 -0.381 -0.023 -0.020 -0.027 0.018
0.006 0.020 -0.076 -0.038 0.378 -0.821 -0.381 1 -0.020 -0.006 0.046 -0.085
0.001 0.053 0.041 0.024 0.018 -0.004 -0.023 -0.020 1 0.587 -0.962 0.760
0.056 -0.068 0.061 -0.066 0.003 -0.009 -0.020 -0.006 0.587 1 -0.440 0.427
0.065 -0.113 0.029 -0.057 0.041 -0.046 -0.027 0.046 -0.962 -0.440 1 -0.739
0.059 -0.005 0.108 0.022 -0.017 0.066 0.018 -0.085 0.760 0.427 -0.739 1

4. Evaluation study

Given the iterative nature of the method, this section provides an evaluation study of the
proposal in three scenarios. Calculations were run on a 2.4 GHz, 4 Gb RAM, Intel Core
i5 computer with a 64-bit operating system.

In the first scenario the performance of the algorithm was evaluated for a 5 by 5
correlation matrix, with rank equals to 4 and a fixed eigenvalue equals to 1, and fixed
covariances ሼݏଵଶ, ,ଵଷݏ ,ଵସݏ ,ଶସݏ ,ଶହݏ ସହሽ randomly chosen from ݏ 1,1 . The MatLab
command is S=sbuild(5,[1 0],0,[1 2 s12;1 3 s13;1 4 s14;2 4 s24;2 5
s25;4 5 s45],[]). The MatLab code for each sij is rand()*(-1)^round(rand()).

One hundred different sets of fixed covariances ሼݏଵଶ, ,ଵଷݏ ,ଵସݏ ,ଶସݏ ,ଶହݏ ସହሽ wereݏ
simulated and, for each combination, the algorithm was run 100 times, and the

10

efficiency of the algorithm was evaluated by registering the convergence (or not), the
number of iterations to converge and the computing time, in seconds. It should be noted
that convergence failure may be due not only to a fail in the algorithm (bad initial), but
also to the randomly chosen covariances and fixed eigenvalues that may lead to an
unfeasible covariance matrix (See Section 2). This justifies the need for running 100
times the algorithm, for each combination of fixed covariances.

For 63 combinations of covariances the algorithm never converged (probably due to
unfeasible covariance matrix). For 7 combinations of covariances the number of times
that the algorithm converged was less than or equal to 75; for the 30 remaining
combinations of covariances the algorithm converged more than 75 times and, among
then, for 10 combinations the algorithm always converged. The average number of
iterations needed in the runs that the algorithm converged was 198. The average time in
the runs that the algorithm converged was 0.0366 seconds. The no convergence was
verified after 5000 iterations, and the average time for the no convergent runs was
0.8844 seconds.

In the second scenario the convergence properties of the algorithm, avoiding the case
when the randomly chosen covariances are jointly incompatibles, or incompatibles also
with the fixed eigenvalues, were studied. The previous simulation was run, but ensuring
compatibility between the fixed covariances and the fixed eigenvalue. To do this, using
the Arteaga and Ferrer’s approach 2 [1], we first simulated an initial (55) covariance
matrix by fixing only an eigenvalue equals to one. From the simulated covariance
matrix, the covariances ሼݏଵଶ, ,ଵଷݏ ,ଵସݏ ,ଶସݏ ,ଶହݏ ସହሽ were selected. Following thisݏ
procedure, one hundred different sets of fixed covariances ሼݏଵଶ, ,ଵଷݏ ,ଵସݏ ,ଶସݏ ,ଶହݏ ସହሽݏ
were simulated and, for each combination, the sbuild algorithm was run 100 times.
Unlike in the first scenario now there is no case for which the algorithm never
converges. In fact, in the worst case the algorithm converges 52 out of the 100 times. In
30 cases the algorithm always converges; in 60 cases the algorithm converges between
76 and 99 out of the 100 times; and only in 10 cases the algorithm converges between
50 and 75 out of the 100 times. Note that in this scenario, given that the feasibility of
the covariance matrix is assured, convergence problems arise only due to bad initials.
For this second scenario, the average number of iterations needed in the runs that the
algorithm converges is 195. The average time in the runs that the algorithm converges is
0.0368 seconds. The no convergence is verified after 5000 iterations, and the average
time for the no convergent runs is 0.8918 seconds.

In the third scenario the algorithm was evaluated for a 50 by 50 correlation matrix with
five fixed eigenvalues equals to 10, 8, 6, 4 and 2, respectively, and by fixing 200
correlations. To avoid the above mentioned inter covariances and eigenvalues
incompatibilities, we built an initial correlation matrix with the desired eigenvalues with
the Arteaga and Ferrer’s approach 2 [1] and we select randomly 200 correlations to be
fixed. With this restriction we run the sbuild algorithm 10 times. This procedure
(building the initial covariance matrix with approach 2 and running 10 times the sbuild
algorithm) was repeated 100 times. In this case the algorithm always converged with a
mean time of 0.4899 seconds and with a mean of 123 iterations.

To evaluate if the convergence is affected by the tolerance we simulated a 5 by 5
correlation matrix with two fixed eigenvalues (0 and 1) and fixed covariances
ሼsଵଶ, sଵଷ, sଵସ, sଶସ, sଶହ, sସହሽ, in a similar manner as in the first scenario described before.
The MatLab command is S=sbuild(5,[1 0],0,co,[]), where co defines the fixed
covariances vector. Different tolerance values were studied.

11

The algorithm was run 500 times (i.e. 500 different initials) for each one of the
tolerance values considered ሼ10ିଷ, 10ିସ, . . . , 10ିଵସሽ. For each tolerance value, the
efficiency of the algorithm was evaluated by registering the percentage of convergence
and the average number of iterations to converge. Figures 5 and 6 illustrate the results:

Figure 5. Convergence ratio vs tolerance

Figure 6. Average number of iterations needed in
convergent runs

Figures 5 shows that convergence ratio is relatively robust to tolerance values in the
studied range. On the other hand, Figure 6 shows that, as expected, the average number
of iterations to converge increases as the tolerance decreases.

This results validate the tolerance value ሺ10ିଵ଴ሻ used in the paper. Anyway, as already
commented, this threshold may be modified by the user.

5. Conclusions

In this work an iterative heuristic method to build a covariance matrix by fixing their
variances, a subset of its covariances, and all or a subset of its eigenvalues is proposed.
The new approach enhances Arteaga and Ferrer’s approach 2 [1] in two important
aspects:

a. It avoids using an X matrix at each iteration and works only by transforming the
covariance matrix S.

b. It generalises approach 2 allowing the user to fix a subset of covariances.

In case of imposing high restrictions on the covariance matrix S the algorithm may not
converge due to the unfeasibility of the designed covariance matrix or bad initials in the
algorithm. If this is the case, the algorithm should be run till a feasible S is obtained. If
convergence is not reached the designed covariance matrix is probably unfeasible.

The tolerance threshold used by default in the algorithm ሺ10ିଵ଴ሻ may be modified by
the user. Convergence ratio is relatively robust to tolerance values in the range
ሼ10ିଷ, 10ିସ, . . . , 10ିଵସሽ.

The covariance matrix obtained from the new algorithm can be used as input of Arteaga
and Ferrer’s approach 1 [1] to generate a multivariate normal data set that exactly
matches the built covariance matrix.

The proposal can be useful for testing the performance of chemometric methods with
data sets matching the theoretical conditions for their applicability or checking their
robustness when the hypothesized properties fail.

Acknowledgements

This research was supported by the Spanish Ministry of Science and Innovation -
MICINN (grant DPI2011-28112-C04-02) and the Spanish Ministry of Science and
Technology (grant SEJ2010-17475/ECON).

75%

80%

85%

90%

95%

100%

1E
-0

3

1E
-0

4

1E
-0

5

1E
-0

6

1E
-0

7

1E
-0

8

1E
-0

9

1E
-1

0

1E
-1

1

1E
-1

2

1E
-1

3

1E
-1

4

0
20
40
60
80

100
120
140
160
180
200

1E
-0

3

1E
-0

4

1E
-0

5

1E
-0

6

1E
-0

7

1E
-0

8

1E
-0

9

1E
-1

0

1E
-1

1

1E
-1

2

1E
-1

3

1E
-1

4

12

Appendix A

In this appendix we show the MatLab code for the algorithm.

function [S It conv]=sbuild(K,eig_val,var,co,S0)
% inputs
% K: number of variables for the wanted S matrix
% eig_val: list of the specified eigenvalues [l1 l2 ...]
% var: specified variances [v1 v2 ... vK]. if var=0 then all
% the variances are ones (S will be a correlation matrix)
% co: specified covariances [i1 j1 co1;i2 j2 co2;...] can be []
% S0: seed matrix. If S0=[] sbuild becomes stochastic
% outputs
% S: wanted covariance matrix
% It: number of iterations to achieve convergence
% conv: 1 if the algorithm converges, 0 otherwise
% calls
% S=sbuild(5,[2.5 1.5 0],0,[],[])
% S is a 5 by 5 correlation matrix with 3 eigenvalues equal to
% 2.5, 1.5 and 0. Two eigenvalues randomly determined such that
% they sum up 5-(2.5+1.5)=1.
% S=sbuild(5,[2.5 1.5 0],0,[1 2 .5;1 3 .5;2 4 -.5],[])
% S is as above, but S12=0.5, S13=0.5 and S24=-.5

% if the variances are not specified, they are fixed as ones
if var==0, var=ones(1,K); end

if size(S0)==[0 0],
 S=cov(rand(K+1,K));
else
 S=S0;
end
ifixcov=[]; fixcov=[];
if size(co,1)>0,
 for i=1:size(co,1);
 ifixcov=[ifixcov (co(i,2)-1)*K+co(i,1) (co(i,1)-1)*K+co(i,2)];
 fixcov=[fixcov co(i,3) co(i,3)];
 end
end

TV=sum(var);
e1=sort(eig_val(find(eig_val~=0)),'descend');
ne1=size(e1,2);ve1=sum(e1);
RV=TV-ve1;
if RV<0,
 error('Fixed eigenvalues cannot sum up more than the variances');
end
ne3=size(eig_val(find(eig_val==0)),2);

ne2=K-ne1-ne3;

alea=rand(1,ne2);
e2=sort(RV/sum(alea)*alea,'descend');

[e ie]=sort([e1 e2],'descend');

conv=0;It=0;Tol=1e-10;OKeig=1;

while 1,
 It=It+1;
 if It>=5000, break, end
 [v,d]=svd(S);

13

 v=v(:,1:ne1+ne2); % STEP 1
 d=diag(d)';
 d=d(1:ne1+ne2);

 dalea=d(ie(ne1+1:ne1+ne2));
 dalea=dalea*RV/sum(dalea);
 [e ie]=sort([e1 dalea],'descend');

 S=v*diag(e)*v'; % STEP 2
 S=rescale(S,var); % STEP 3 re-scale S
 S(ifixcov)=fixcov; % STEP 4 fix covariances
 [v d]=eig(S);
 d=abs(d); % STEP 5 avoids negative eigenvalues
 S=v*d*v';
 S=rescale(S,var);

 % test for covariances
 OKcov=1;
 if size(fixcov,1)>0 && max((S(ifixcov)-fixcov).^2)>Tol, OKcov=0; end

 % test for eigenvalues
 OKeig=0;
 if ne1+ne3>0,
 OKeig=zeros(1,ne1+ne3); ei=diag(d);
 for i=1:ne1+ne3,
 for j=1:K,
 if (ei(j)-eig_val(i))^2<Tol && OKeig(i)==0,
 OKeig(i)=1; ei(j)=-1;
 end
 end
 end
 end

 % check for convergence
 if sum(OKeig)+OKcov==ne1+ne3+1, conv=1;break;end
end

if size(fixcov,1)>0 && OKcov==0,
 warning('fail in matching the fixed covariances');
end
if ne1+ne3>0 && sum(OKeig)~=ne1+ne3,
 warning('fail in matching the fixed eigenvalues');
end

function S=rescale(S,var)
K=size(S,1);
for i=1:K-1
 for j=i+1:K,
 S(i,j)=S(i,j)*sqrt(var(i)*var(j)/(S(i,i)*S(j,j))); S(j,i)=S(i,j);
 end
end
for i=1:K, S(i,i)=var(i); end

14

References

[1] F. Arteaga, A. Ferrer, How to simulate normal data sets with the desired correlation
structure, Chemometrics and Intelligent Laboratory Systems 101 (2010) 38-42.

[2] J.E. Gentle, Cholesky Factorization, Numerical Linear Algebra for Applications,
Springer-Verlag, Berlin, 1998.

[3] R.B. Bendel, M.R. Mickey, Population correlation matrices for sampling
experiments, Communications in Statistics–Simulation and Computation B7:2 (1978)
163-182.

[4] S.P. Lin, R.B. Bendel, Algorithm AS 213: Generation of Population Correlation
Matrices with Specified Eigenvalues, Journal of the Royal Statistical Society. Series C
(Applied Statistics) 34 (1985) 193-198.

[5] D. Kurowicka, R.M. Cooke, Completion problem with partial correlation vines,
Linear Algebra and its Applications 418 (2006) 188-200.

 [6] C. Guinot, J. Latreille, M. Tenenhaus, PLS Path modelling and multiple table
analysis. Application to the cosmetic habits of women in Ile-de-France, Chemometrics
and Intelligent Laboratory Systems 58 (2001) 247-259.

[7] M. Tenenhaus, V.E. Vinzi, Y.M. Chatelin, C. Lauro, PLS path modeling,
Computational Statistics & Data Analysis 48 (2005) 159-205.

[8] D. Gefen, D. Straub, A practical guide to factorial validity using PLS-Graph:
Tutorial and annotated example, Communications of the Association for Information
Systems 16 (2005) 91-109.

[9] W.W. Chin, How to write up and report PLS analyses, in: V. Esposito Vinzi, W.W.
Chin, J. Henseler, and H. Wang (Eds.), Handbook of partial least squares: Concepts,
methods, and applications, Springer, Berlin, 2010, pp. 655–690.

[10] J. Camacho, J. Picó, A. Ferrer, Bilinear modelling of batch processes. Part I:
theoretical discussion, Journal of Chemometrics 22 (2008) 299–308.

