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Abstract 

The problem of building a covariance matrix by fixing their diagonal values (variances) 
and all or a subset of its eigenvalues has been solved in different ways in the literature. 
In this paper we propose an iterative heuristic method to build such covariance matrix 
when a subset of its covariances is also chosen from the user. This provides a more 
flexible approach than those available in the literature for designing covariances 
matrices with the desired structure. As in other related approaches, the proposal can be 
useful for testing the performance of chemometric methods with data sets matching the 
theoretical conditions for their applicability or checking their robustness when the 
hypothesized properties fail. 

1. Introduction 

In a related paper, Arteaga and Ferrer [1] propose a singular value decomposition 
(SVD) based method with two approaches to simulate N by K multivariate normal data 
sets with a desired correlation structure, the approach 1 and approach 2, respectively. 
In approach 1 the user specifies the desired covariance matrix (that can be singular), 
yielding a data set with a sample covariance matrix exactly matching the specified by 
the user. This can be seen as an alternative to the popular Cholesky decomposition 
approach [2]. In approach 2 the user specifies the correlation structure by fixing a 
subset of the eigenvalues of the covariance matrix and the variances for the variables of 
the data set, yielding a column-wise centred data set. This resultant data set verifies that 
the sample covariance matrix has the desired variances and eigenvalues. An iterative 
heuristic method that uses an initial random matrix data set X is used. The role of matrix 
X is to assure a feasible covariance matrix ܁ ൌ ܆୘܆ ሺܰ െ 1ሻ⁄ . 

The problem of building a correlation matrix with specified eigenvalues has a popular 
solution: the Bendel and Mickey algorithm [3,4] (Bendel and Mickey, 1978; Lin and 
Bendel, 1985). This algorithm takes a matrix having the specified eigenvalues and uses 
a finite sequence of rotations to introduce 1’s on the diagonal. 

In this paper we propose a new iterative algorithm to build covariance matrices not only 
by fixing their variances and eigenvalues (as in Arteaga & Ferrer’s approach 2 [1] but 
also a subset of their covariances as in the so-called completion problem [5]. The 
method also handles null eigenvalues, yielding singular covariance matrices. This 
increases the flexibility of the user when designing covariance matrices. The method is 
deterministic if the user defines a symmetric seed matrix S and the complete set of the 
eigenvalues; otherwise, if the user employs a randomly generated symmetric seed 
matrix, or some of the eigenvalues remain unfixed, the method becomes stochastic.  
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The paper is organized as follows: Section 2 introduces the proposed algorithm; in 
Section 3 its performance is illustrated with several examples; in section 4 some 
conclusions are drawn. The commented MatLab code for the algorithm is detailed in the 
Appendix. 

2. The algorithm 

Let ൛ݒ௝ൟ௝ୀଵ,…,௄ be the pre-specified variances for the K variables, ൛ܿ௜௝ൟ the fixed subset 

of covariances and ሼߣ௔ሽ௔ୀଵ,…,஺ the desired subset of A eigenvalues (note that some of 
them can be zeros), with ܣ ൑ ∑ and ,ܭ ௔஺ߣ

௔ୀଵ ൑ ∑ ௝ݒ
௄
௝ୀଵ . The remaining ܭ െ  ܣ

eigenvalues can be generated as random non-negative values that sum ∑ ௝ݒ
௄
௝ୀଵ െ

∑ ௔஺ߣ
௔ୀଵ  (in this case the algorithm becomes stochastic). Note that if ܭ ൒ ܰ, no more 

than ܰ െ 1 non-null eigenvalues should be specified. It must be noted also that, when 
we combine the fixed eigenvalues with those randomly generated, the K eigenvalues 
must be sorted in descending order, and the position for each non-null fixed eigenvalue 
must be recorded for tracking purposes, because the convergence is attained in terms of 
the fixed covariances and the fixed eigenvalues. 

Let L be a diagonal K by K matrix with diagonal values equal to the eigenvalues, in 
descending order, i.e. ݈௔,௔ ൌ  ௔, and let r be the desired rank for S. The proposedߣ
algorithm is outlined in the following: 

Step 0: define S as an arbitrary symmetric K by K seed matrix. 

Step 1: define V as the first r eigenvectors of S. 

Step 2: replace S by ܁ ൌ  .୘܄ۺ܄

Step 3: scale S to have the desired variances. 

Step 4: replace the ൛ݏ௜௝ൟ values of matrix S with the ൛ܿ௜௝ൟ desired covariances. 

Step 5: if S has negative eigenvalues, replace them with their absolute value and scale 
S to have the desired variances. 

Step 6: repeat steps 1 to 5 until convergence on the desired eigenvalues and 
covariances. 

In step 0 S can be either specified by the user or randomly generated. Note that, if all 
eigenvalues are fixed, the resultant covariance matrix is completely determined by the 
initial S. This is not true if a subset of the eigenvalues remain unfixed because they are 
randomly generated. 

In step 2 the eigenvectors of the current S matrix are combined with the desired 
eigenvalues. Let 1n be the number of non-null fixed eigenvalues. If ݊ଵ ൏  the ݊ଵ fixed ,ݎ
eigenvalues replace the corresponding eigenvalues of the current S matrix (remember 
that their positions have been recorded); the remaining ݎ െ ݊ଵ non-null eigenvalues of S 
are re-scaled to assure they sum up the part of the total variance not explained by the 
previously ݊ଵ fixed non-null eigenvalues. In this step S is constrained to have the 
desired eigenvalues. 

In step 3 the current covariance matrix is scaled by multiplying each of its ൛ݏ௜௝ൟ values 

with the weighting factor ඥݒ௜ݒ௝ ⁄௝௝ݏ௜௜ݏ . This guaranties the desired variances for S, at 
the expense of changing the desired eigenvalues. 
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In step 4 S is constrained to have the desired covariances; consequently, the eigenvalues 
and the variances change. 

The imputed covariances in Step 4 can lead us to an invalid covariance matrix, with 
negative eigenvalues. If this is the case, in Step 5 the negative eigenvalues are replaced 
by their absolute value, and S is scaled to have the desired variances.  

The iterative nature of this approach allows that, at each iteration, if the algorithm 
converges, the differences between the desired and obtained eigenvalues and 
covariances are smaller (note that step 4 guaranties the variances). If this is the case, the 
matrix S in step 6 will converge to a matrix matching the desired variances, eigenvalues 
and covariances. 

In our implementation, the algorithm converges when for each fixed covariance ܿ௜௝, the 

current S matrix satisfies ൫ܿ௜௝ െ ௜௝൯ݏ
ଶ
൏ 10ିଵ଴, and for each fixed eigenvalue	݈௔ there is 

an eigenvalue ߣ௔	in S such that ሺߣ௔ െ ݈௔ሻଶ ൏ 10ିଵ଴. This tolerance threshold 
(10ିଵ଴ሻ	may be modified by the user. 

Figure 1 illustrates this algorithm. 

 
Figure 1. Schedule for the algorithm to build a covariance matrix with pre-specified variances, 
eigenvalues and a fixed subset of covariances. 
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For convergence, only the desired covariances and eigenvalues have to be surveyed. 
Note that for tracking the non-null eigenvalues at each iteration we need to know their 
positions along the K eigenvalues (the null fixed eigenvalues being the last ones). 

This algorithm performs well for variances and a subset of the covariances, or for 
variances and a subset of the eigenvalues, but when the variances, a subset of the 
eigenvalues, and a subset of the covariances are fixed, convergence problems may arise. 

It must be noted that some combinations of variances, covariances, and eigenvalues may 
be unfeasible, that is, there is no covariance matrix satisfying those restrictions, and the 
algorithm fails to converge. Kurowicka and Cooke [5] show that an incomplete 
covariance matrix can be filled out when all partial correlations that can be calculated 
from the variances and the known covariances of the incomplete covariance matrix 
belong to (-1, 1). The problem is that when some of the eigenvalues are constrained, 
Kurowicka and Cooke’s method may not be useful to guarantee a feasible covariance 
matrix. 

The MatLab code for this new algorithm (the sbuild function) is given in Appendix A. 

3. Examples 

In this section the algorithm’s performance is illustrated by using some examples. The 
MatLab command is S=sbuild(K,eig,var,co,S0), where S is the resultant 
covariance matrix, K is the number of variables, eig is a row vector with the desired 
eigenvalues (this can be [] when no eigenvalues are fixed), var is a row vector with the 
desired variances (if var is set to 0 all the variances are 1’s), co provides the desired 
covariances (this can be []), S0 is the seed covariance matrix (this can be []). 

3.1. Two correlation matrices with the same specified structure 

Two different 5 by 5 correlation matrices with rank 4, with fixed eigenvalues {2.5, 1.0} 
and with fixed covariances ሼݏଵଶ ൌ 0.5, ଵଷݏ ൌ െ0.5, ଶସݏ ൌ 0.3, ଷହݏ ൌ െ0.7, ሽ are 
simulated. Both covariance matrices are shown in Table 1. For the first case the 
algorithm took 46 iterations to converge, while for the second case 29 iterations were 
needed. 

The MatLab command for both covariance matrices is: 

S=sbuild(5,[2.5 1 0],0,[1 2 .5;1 3 -.5;2 4 .3;3 5 -.7],[]) 

Table 1. Two different simulated covariance matrices with fixed variances, some fixed correlations and 
some fixed eigenvalues. Fixed values are in bold emphasis. 

 X1 X2 X3 X4 X5  X1 X2 X3 X4 X5 
X1 1.0000 0.5000 -0.5000 0.2172 0.2249 X1 1.0000 0.5000 -0.5000 -0.2122 0.0004
X2 0.5000 1.0000 -0.2456 0.3000 0.2729 X2 0.5000 1.0000 -0.6367 0.3000 0.5449
X3 -0.5000 -0.2456 1.0000 -0.6427 -0.7000 X3 -0.5000 -0.6367 1.0000 0.0842 -0.7000
X4 0.2172 0.3000 -0.6427 1.0000 0.0233 X4 -0.2122 0.3000 0.0842 1.0000 -0.2858
X5 0.2249 0.2729 -0.7000 0.0233 1.0000 X5 0.0004 0.5449 -0.7000 -0.2858 1.0000

 λ1 λ2 λ3 λ4 λ5  λ1 λ2 λ3 λ4 λ5 
 2.5000 1.0000 0.9465 0.5535 0.0000  2.5000 1.2281 1.0000 0.2719 0.0000

3.2. A covariance matrix that contains some pre-specified submatrices 

A 9 by 9 correlation matrix with rank 6, with an eigenvalue equals to 1.0, that 
incorporates three 3 by 3 correlation matrices, S1, S2 and S3 as shown in Figure 2, is 
simulated. 
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Figure 2. A 9 by 9 matrix that incorporates three 3 by 3 correlation matrices. 

If ܁ଵ ൌ ൥
1 0.5 0.4
0.5 1 0.7
0.4 0.7 1

൩, ܁ଶ ൌ ൥
1 0.5 െ0.4
0.5 1 െ0.7
െ0.4 െ0.7 1

൩ and ܁ଷ ൌ ൥
1 െ0.5 0.4

െ0.5 1 െ0.7
0.4 െ0.7 1

൩, 

co=[1 2 .5;1 3 .4;2 3 .7;4 5 .5;4 6 -.4;5 6 -.7;7 8 -.5;7 9 .4;8 9 -
.7] and the MatLab command is S=sbuild(9,[1 0 0 0],0,co,[]), the resultant 
correlation matrix, obtained after 36 iterations, is shown in Table 2. 

Table 2. A full rank 9 by 9 correlation matrix that incorporates three 3 by 3 correlation matrices. Fixed 
values are in bold emphasis. 

 X1 X2 X3 X4 X5 X6 X7 X8 X9 

X1 1.0000 0.5000 0.4000 0.0677 0.4031 0.0249 0.2568 -0.1873 -0.3047
X2 0.5000 1.0000 0.7000 -0.3362 -0.0092 0.2583 -0.0470 -0.1841 0.0141
X3 0.4000 0.7000 1.0000 -0.1222 -0.1409 -0.0770 0.1102 0.0845 0.1669
X4 0.0677 -0.3362 -0.1222 1.0000 0.5000 -0.4000 0.8028 -0.0817 -0.0194
X5 0.4031 -0.0092 -0.1409 0.5000 1.0000 -0.7000 0.3009 -0.3502 -0.1620
X6 0.0249 0.2583 -0.0770 -0.4000 -0.7000 1.0000 -0.0466 -0.0819 0.0594
X7 0.2568 -0.0470 0.1102 0.8028 0.3009 -0.0466 1.0000 -0.5000 0.4000
X8 -0.1873 -0.1841 0.0845 -0.0817 -0.3502 -0.0819 -0.5000 1.0000 -0.7000
X9 -0.3047 0.0141 0.1669 -0.0194 -0.1620 0.0594 0.4000 -0.7000 1.0000
 λ1 λ2 λ3 λ4 λ5 λ6 λ7 λ8 λ9 
 2.6740 2.2173 1.8601 1.0000 0.9646 0.2840 0.0000 0.0000 0.0000 

3.3. A correlation matrix with a highly restricted structure 

In this example a full rank 5 by 5 correlation matrix, with fixed eigenvalues {2.0, 1.5} 
and with fixed covariances ሼݏଵଶ ൌ ଶଷݏ ൌ ଷସݏ ൌ ସହݏ ൌ ଵସݏ ൌ ଶହݏ ൌ 0.0ሽ is simulated. 
The resultant correlation matrix, obtained after 31 iterations, is shown in Table 3. 

Table 3. A full rank 5 by 5 correlation matrix with fixed variances, some fixed correlations and some 
fixed eigenvalues. Fixed values are in bold emphasis. 

 X1 X2 X3 X4 X5 
X1 1.0000 0.0000 0.7813 0.0000 -0.5037
X2 0.0000 1.0000 0.0000 0.5000 0.0000
X3 0.7813 0.0000 1.0000 0.0000 -0.1457
X4 0.0000 0.5000 0.0000 1.0000 0.0000
X5 -0.5037 0.0000 -0.1457 0.0000 1.0000

 λ1 λ2 λ3 λ4 λ5 
 2.0000 1.5000 0.8678 0.5000 0.1322 

3.4. Retrieving the raw data in a PLS Path Modelling application 

In PLS Path Modeling applications [6,7] a data set X with N rows (objects) and K 
columns (variables named indicators) is arranged in B blocks X1, X2, …, XB, with K1, 
K2, …, KB indicators, respectively, being ܭ ൌ ∑ ௕ܭ

஻
௕ୀଵ . 

Each one of the B blocks of indicators, Xb, is a scale for measuring, in an indirect 
manner, a latent variable (i.e. a construct) named tb. For this example, let us assume that 

S1

S2

S3
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each Xb can be expressed as ܆௕ ൌ ௕ܘ௕ܜ
୘ ൅ ۳௕, that is, each one of the indicators of the 

bth block is a reflect of their latent variable tb (this is the so-called reflective way). 

We assume that there are causal relationships among the constructs, reflected in the so-
called structural model. In Figure 3 a simple example with three constructs with four, 
four and two indicators, respectively, is shown. Raw data are available for this example 
in a Gefen and Straub’s work [8].  

 
Figure 3. Structural model for the Gefen and Straub’s example 

The estimation of a PLS Path Model is determined by the K by K correlation matrix for 
the indicators ܁ ൌ ܆୘܆ ሺܰ െ 1ሻ⁄ , but this is not often published in literature. Therefore, 
potential readers cannot replicate the estimation nor fit alternative PLS path models [9]. 
However, researchers often publish: i) the between constructs correlations ۿ ൌ
܂୘܂ ሺܰ െ 1ሻ⁄ , where ܂ ൌ ሾܜଵ	ܜଶ  ஻ሿ, ii) the correlations between each construct andܜ	⋯
their indicators: the loadings ܆௕

୘ܜ௕ ሺܰ െ 1ሻ⁄ , and iii) the correlations between each 
indicator and the other constructs: the cross-loadings ܆௕

୘ܜ௖ ሺܰ െ 1ሻ⁄ , ܾ ് ܿ. If we call L 
the matrix that groups the loadings and the cross-loadings, i.e. ۺ ൌ ܂୘܆ ሺܰ െ 1ሻ⁄ , we 
obtain the following correlation matrix: 

܀ ൌ
൤܆

୘

୘܂
൨ ሾ܆ ሿ܂

ܰ െ 1
ൌ ൤

܁ ۺ
୘ۺ  ൨ۿ

This correlation matrix is incomplete because the correlations between the indicators, 
grouped in S, are usually not provided in papers [9]. In the case of the Gefen and 
Straub’s example, the structure of the correlation matrix R is shown in Figure 4. 

 
Figure 4. Correlation matrix (indicators plus constructs) for the Gefen and Straub’s example. 

As we have an incomplete correlation matrix, we can use the sbuild function to build a 
complete correlation matrix that matches the known correlations. Due to the strong 
dependence between the indicators and the constructs (each Xb block of variables 
associated to the tb construct is essentially one-dimensional) and the fact that we know 
the correlations between the constructs (the Q matrix), it is expected that the estimated 
K by K indicators correlation submatrix, ܁෠, is an accurate approximation of the 
unknown correlation matrix S. If we re-estimate the model, from ܁෠, and compare our 
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results with the published ones, we can measure how accurate our estimation is and, if 
this is the case, we can estimate alternative PLS path models as if we would have got 
the original data. 

Tables 4, 5 and 6 show the S matrix for the Gefen and Straub’s example, the loadings 
and cross-loadings matrix L after the estimation of the PLS path model from Figure 3, 
and the constructs correlation matrix, Q, respectively. 

Table 4. Unpublished indicators correlation matrix S for the Gefen and Straub’s example. 
  X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 
X1 1 0.5160 0.6562 0.5503 0.3152 0.2586 0.3241 0.3688 0.1796 0.2510 
X2 0.5160 1 0.6377 0.5794 0.2809 0.2486 0.3671 0.4001 0.1883 0.2373 
X3 0.6562 0.6377 1 0.6438 0.1936 0.2014 0.3260 0.4226 0.1050 0.2491 
X4 0.5503 0.5794 0.6438 1 0.4214 0.2752 0.4571 0.4332 0.1288 0.2470 
X5 0.3152 0.2809 0.1936 0.4214 1 0.5911 0.6229 0.5426 0.2717 0.3235 
X6 0.2586 0.2486 0.2014 0.2752 0.5911 1 0.5565 0.5570 0.1854 0.1385 
X7 0.3241 0.3671 0.3260 0.4571 0.6229 0.5565 1 0.6771 0.3672 0.3467 
X8 0.3688 0.4001 0.4226 0.4332 0.5426 0.5570 0.6771 1 0.3540 0.4006 
X9 0.1796 0.1883 0.1050 0.1288 0.2717 0.1854 0.3672 0.3540 1 0.6343 
X10 0.2510 0.2373 0.2491 0.2470 0.3235 0.1385 0.3467 0.4006 0.6343 1 

Table 5. Published L matrix with the correlations among the indicators and the constructs for the Gefen 
and Straub’s example (loadings, in bold, and cross-loadings). 

  t1 t2 t3 
X1 0.8085 0.3873 0.2399
X2 0.8171 0.4018 0.2366
X3 0.8677 0.3619 0.1994
X4 0.8464 0.4901 0.2108
X5 0.3714 0.8140 0.3304
X6 0.2974 0.7603 0.1780
X7 0.4471 0.8782 0.3943
X8 0.4875 0.8641 0.4185
X9 0.1806 0.3699 0.8945
X10 0.2948 0.3856 0.9130

Table 6. Published correlation matrix for the constructs, Q, for the Gefen and Straub’s example. 
t1 t2 t3 

t1 1 0.4968 0.2658 
t2 0.4968 1 0.4182 
t3 0.2658 0.4182 1 

The MatLab command is now R=sbuild(13,[],0,co,[]), with co=[1 11 .8085;1 
12 .3873; … ;10 13 .9130;11 12 .4968;11 13 .2658;12 13 .4182]. Table 7 
shows the 10 by 10 estimated submatrix ܁෠ associated to the indicators, extracted from 
matrix R. 

Table 7. Estimated indicators correlation matrix ܁ො for the Gefen and Straub’s example. 
X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 

X1 1 0.6533 0.5751 0.5661 0.2483 0.3208 0.2508 0.4145 0.3325 0.1481 
X2 0.6533 1 0.5627 0.5542 0.1901 0.2984 0.4238 0.3846 0.1488 0.3211 
X3 0.5751 0.5627 1 0.6903 0.3710 0.2512 0.3745 0.2819 0.0120 0.2423 
X4 0.5661 0.5542 0.6903 1 0.4270 0.1648 0.4001 0.5026 0.1831 0.2210 
X5 0.2483 0.1901 0.3710 0.4270 1 0.6119 0.6839 0.5324 0.2723 0.2181 
X6 0.3208 0.2984 0.2512 0.1648 0.6119 1 0.6087 0.4895 0.2093 0.1270 
X7 0.2508 0.4238 0.3745 0.4001 0.6839 0.6087 1 0.6606 0.2754 0.3850 
X8 0.4145 0.3846 0.2819 0.5026 0.5324 0.4895 0.6606 1 0.3758 0.4544 
X9 0.3325 0.1488 0.0120 0.1831 0.2723 0.2093 0.2754 0.3758 1 0.6687 
X10 0.1481 0.3211 0.2423 0.2210 0.2181 0.1270 0.3850 0.4544 0.6687 1 
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The difference between S and ܁෠ should not be measured element-wise but by comparing 
the resultant estimated models with S and ܁෠. In order to do so, we re-estimate the PLS 
path model from ܁෠, yielding a new constructs correlation matrix ۿ෡ , shown in Table 8. 

Table 8. Correlation matrix for the constructs for the Gefen and Straub’s example, from the estimated 
indicators correlation matrix ܁ො. 

t1 t2 t3 
t1 1 0.4891 0.2651
t2 0.4891 1 0.4101
t3 0.2651 0.4110 1 

By comparing Table 6 and Table 8, it is concluded that the between constructs 
correlations matrices Q and ۿ෡  are quite similar. 

The PLS path model estimation yields also the coefficients for the paths. In Table 9 we 
compare these path coefficients from both models. 

Table 9. Estimated coefficients for the Gefen and Straub’s example with both the original and the 
estimated indicators correlation matrix. 

From To Original Estimated
t1 t2 0.4968 0.4891
t1 t3 0.0771 0.0842
t2 t3 0.3799 0.3698

From Figure 3 we see that t2 and t3 are two endogenous constructs and in Table 10 we 
compare their R2 from both models. Again we see that the model estimated from the 
estimated indicators correlation matrix agrees with the original model. 

Table 10. Estimated R2 coefficients for the endogenous constructs for the Gefen and Straub’s example 
with both the original and the estimated indicators correlation matrix. 

Original Estimated
t2 24.68% 23.92% 
t3 17.93% 17.43% 

The PLS path model estimated yields also other useful statistics (weights, 
communalities, reliability measures, …) that researchers often publish. As a suitable 
strategy, the sbuild function can be applied several times, say M, to achieve M estimated 

indicators correlation matrices, ൛܁෠௠ൟ௠ୀଵ

ெ
, and choose among them the one that better 

matches with the previously mentioned published statistics. 

3.5. Simulating multi-phase data 

Processes with several stages or phases, i.e. processes with dynamics of different order 
and changes in the correlation structure among variables are quite common in practice. 
The multi-stage nature of both batch and continuous processes can also be the result of 
the different processing units and the distinguishable operations inside a unit. Even in 
the same unit or stage of a batch process, the correlation structure and process dynamics 
may change as the batch is being processed [10]. 

In this example a correlation matrix from a process with 3 phases (or stages) and 4 
variables in each phase will be simulated. Let S1, S2 and S3 be the correlation matrices 
for each of the 3 phases. Each Si is assumed to have an eigenvalue equals to 3 to assure 
a strong relationships between the 4 variables in each phase. In this case sbuild function 
is used to build a correlation matrix for the 12 variables resulting after arranging the 4 
variables from each phase. The diagonal blocks S1, S2 and S3 are fixed in advance 
letting the algorithm to obtain only the correlations out of the diagonal blocks. Table 11 
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shows the fixed correlation blocks for the multi-phase example storage in variable 
co=[1 2 -.634; 1 3 .890;5 6 -.739;…;7 8 -.381;9 10 .587;…;11 12 -.739]. 

Table 11. Fixed correlations for the multi-phase example. 

1 -0.634 0.890 -0.776                 
-0.634 1 -0.680 0.498   
0.890 -0.680 1 -0.488   
-0.776 0.498 -0.488 1   
  1 -0.739 -0.791 0.378   
  -0.739 1 0.831 -0.821   
  -0.791 0.831 1 -0.381   
  0.378 -0.821 -0.381 1   
  1 0.587 -0.962 0.760 
  0.587 1 -0.440 0.427 
  -0.962 -0.440 1 -0.739
                0.760 0.427 -0.739 1 

This procedure is run M times and, by averaging the resulting complete M correlation 
matrices, the final desired S matrix is obtained. This is a correlation matrix (1212) with 
3 diagonal blocks Si (44) matching the fixed values shown in Table 11 and with the 
values out of the diagonal blocks close to 0 (i.e. they are averages of random correlation 
values, ranging from -1 to 1). The largest the number M of simulated matrices the 
closest to 0 the out of diagonal blocks correlations. 

Table 12 shows the outcome from M=10 by using the following MatLab command:  

S=zeros(12,12);for i=1:10,S=S+=sbuild(12,[],0,co,[]);end;S=S/10,with 
variable co as specified before. 

Table 12. Simulated multi-phase correlation matrix. Fixed values are in bold emphasis. 

1 -0.634 0.890 -0.776 0.029 -0.008 -0.021 0.006 0.001 0.056 0.065 0.059 
-0.634 1 -0.680 0.498 0.010 0.022 0.063 0.020 0.053 -0.068 -0.113 -0.005 
0.890 -0.680 1 -0.488 0.025 0.049 0.007 -0.076 0.041 0.061 0.029 0.108 
-0.776 0.498 -0.488 1 -0.074 0.061 0.094 -0.038 0.024 -0.066 -0.057 0.022 
0.029 0.010 0.025 -0.074 1 -0.739 -0.791 0.378 0.018 0.003 0.041 -0.017 
-0.008 0.022 0.049 0.061 -0.739 1 0.831 -0.821 -0.004 -0.009 -0.046 0.066 
-0.021 0.063 0.007 0.094 -0.791 0.831 1 -0.381 -0.023 -0.020 -0.027 0.018 
0.006 0.020 -0.076 -0.038 0.378 -0.821 -0.381 1 -0.020 -0.006 0.046 -0.085 
0.001 0.053 0.041 0.024 0.018 -0.004 -0.023 -0.020 1 0.587 -0.962 0.760 
0.056 -0.068 0.061 -0.066 0.003 -0.009 -0.020 -0.006 0.587 1 -0.440 0.427 
0.065 -0.113 0.029 -0.057 0.041 -0.046 -0.027 0.046 -0.962 -0.440 1 -0.739 
0.059 -0.005 0.108 0.022 -0.017 0.066 0.018 -0.085 0.760 0.427 -0.739 1 

4. Evaluation study  

Given the iterative nature of the method, this section provides an evaluation study of the 
proposal in three scenarios. Calculations were run on a 2.4 GHz, 4 Gb RAM, Intel Core 
i5 computer with a 64-bit operating system. 

In the first scenario the performance of the algorithm was evaluated for a 5 by 5 
correlation matrix, with rank equals to 4 and a fixed eigenvalue equals to 1, and fixed 
covariances ሼݏଵଶ, ,ଵଷݏ ,ଵସݏ ,ଶସݏ ,ଶହݏ ସହሽ randomly chosen from ݏ 1,1 . The MatLab 
command is S=sbuild(5,[1 0],0,[1 2 s12;1 3 s13;1 4 s14;2 4 s24;2 5 
s25;4 5 s45],[]). The MatLab code for each sij is rand()*(-1)^round(rand()). 

One hundred different sets of fixed covariances ሼݏଵଶ, ,ଵଷݏ ,ଵସݏ ,ଶସݏ ,ଶହݏ  ସହሽ wereݏ
simulated and, for each combination, the algorithm was run 100 times, and the 
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efficiency of the algorithm was evaluated by registering the convergence (or not), the 
number of iterations to converge and the computing time, in seconds. It should be noted 
that convergence failure may be due not only to a fail in the algorithm (bad initial), but 
also to the randomly chosen covariances and fixed eigenvalues that may lead to an 
unfeasible covariance matrix (See Section 2). This justifies the need for running 100 
times the algorithm, for each combination of fixed covariances. 

For 63 combinations of covariances the algorithm never converged (probably due to 
unfeasible covariance matrix). For 7 combinations of covariances the number of times 
that the algorithm converged was less than or equal to 75; for the 30 remaining 
combinations of covariances the algorithm converged more than 75 times and, among 
then, for 10 combinations the algorithm always converged. The average number of 
iterations needed in the runs that the algorithm converged was 198. The average time in 
the runs that the algorithm converged was 0.0366 seconds. The no convergence was 
verified after 5000 iterations, and the average time for the no convergent runs was 
0.8844 seconds. 

In the second scenario the convergence properties of the algorithm, avoiding the case 
when the randomly chosen covariances are jointly incompatibles, or incompatibles also 
with the fixed eigenvalues, were studied. The previous simulation was run, but ensuring 
compatibility between the fixed covariances and the fixed eigenvalue. To do this, using 
the Arteaga and Ferrer’s approach 2 [1], we first simulated an initial (55) covariance 
matrix by fixing only an eigenvalue equals to one. From the simulated covariance 
matrix, the covariances ሼݏଵଶ, ,ଵଷݏ ,ଵସݏ ,ଶସݏ ,ଶହݏ  ସହሽ were selected. Following thisݏ
procedure, one hundred different sets of fixed covariances ሼݏଵଶ, ,ଵଷݏ ,ଵସݏ ,ଶସݏ ,ଶହݏ  ସହሽݏ
were simulated and, for each combination, the sbuild algorithm was run 100 times. 
Unlike in the first scenario now there is no case for which the algorithm never 
converges. In fact, in the worst case the algorithm converges 52 out of the 100 times. In 
30 cases the algorithm always converges; in 60 cases the algorithm converges between 
76 and 99 out of the 100 times; and only in 10 cases the algorithm converges between 
50 and 75 out of the 100 times. Note that in this scenario, given that the feasibility of 
the covariance matrix is assured, convergence problems arise only due to bad initials. 
For this second scenario, the average number of iterations needed in the runs that the 
algorithm converges is 195. The average time in the runs that the algorithm converges is 
0.0368 seconds. The no convergence is verified after 5000 iterations, and the average 
time for the no convergent runs is 0.8918 seconds. 

In the third scenario the algorithm was evaluated for a 50 by 50 correlation matrix with 
five fixed eigenvalues equals to 10, 8, 6, 4 and 2, respectively, and by fixing 200 
correlations. To avoid the above mentioned inter covariances and eigenvalues 
incompatibilities, we built an initial correlation matrix with the desired eigenvalues with 
the Arteaga and Ferrer’s approach 2 [1] and we select randomly 200 correlations to be 
fixed. With this restriction we run the sbuild algorithm 10 times. This procedure 
(building the initial covariance matrix with approach 2 and running 10 times the sbuild 
algorithm) was repeated 100 times. In this case the algorithm always converged with a 
mean time of 0.4899 seconds and with a mean of 123 iterations. 

To evaluate if the convergence is affected by the tolerance we simulated a 5 by 5 
correlation matrix with two fixed eigenvalues (0 and 1) and fixed covariances 
ሼsଵଶ, sଵଷ, sଵସ, sଶସ, sଶହ, sସହሽ, in a similar manner as in the first scenario described before. 
The MatLab command is S=sbuild(5,[1 0],0,co,[]), where co defines the fixed 
covariances vector. Different tolerance values were studied. 
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The algorithm was run 500 times (i.e. 500 different initials) for each one of the 
tolerance values considered ሼ10ିଷ, 10ିସ, . . . , 10ିଵସሽ. For each tolerance value, the 
efficiency of the algorithm was evaluated by registering the percentage of convergence 
and the average number of iterations to converge. Figures 5 and 6 illustrate the results: 

 

Figure 5. Convergence ratio vs tolerance 

 

Figure 6. Average number of iterations needed in 
convergent runs 

Figures 5 shows that convergence ratio is relatively robust to tolerance values in the 
studied range. On the other hand, Figure 6 shows that, as expected, the average number 
of iterations to converge increases as the tolerance decreases. 

This results validate the tolerance value ሺ10ିଵ଴ሻ used in the paper. Anyway, as already 
commented, this threshold may be modified by the user. 

5. Conclusions 

In this work an iterative heuristic method to build a covariance matrix by fixing their 
variances, a subset of its covariances, and all or a subset of its eigenvalues is proposed. 
The new approach enhances Arteaga and Ferrer’s approach 2 [1] in two important 
aspects: 

a. It avoids using an X matrix at each iteration and works only by transforming the 
covariance matrix S.  

b. It generalises approach 2 allowing the user to fix a subset of covariances. 

In case of imposing high restrictions on the covariance matrix S the algorithm may not 
converge due to the unfeasibility of the designed covariance matrix or bad initials in the 
algorithm. If this is the case, the algorithm should be run till a feasible S is obtained. If 
convergence is not reached the designed covariance matrix is probably unfeasible. 

The tolerance threshold used by default in the algorithm ሺ10ିଵ଴ሻ may be modified by 
the user. Convergence ratio is relatively robust to tolerance values in the range 
ሼ10ିଷ, 10ିସ, . . . , 10ିଵସሽ.  

The covariance matrix obtained from the new algorithm can be used as input of Arteaga 
and Ferrer’s approach 1 [1] to generate a multivariate normal data set that exactly 
matches the built covariance matrix.  

The proposal can be useful for testing the performance of chemometric methods with 
data sets matching the theoretical conditions for their applicability or checking their 
robustness when the hypothesized properties fail.  
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Appendix A 

In this appendix we show the MatLab code for the algorithm.  

function [S It conv]=sbuild(K,eig_val,var,co,S0) 
% inputs 
% K:        number of variables for the wanted S matrix 
% eig_val:  list of the specified eigenvalues [l1 l2 ...] 
% var:      specified variances [v1 v2 ... vK]. if var=0 then all 
%           the variances are ones (S will be a correlation matrix) 
% co:       specified covariances [i1 j1 co1;i2 j2 co2;...] can be [] 
% S0:       seed matrix. If S0=[] sbuild becomes stochastic 
% outputs 
% S:     wanted covariance matrix 
% It:       number of iterations to achieve convergence 
% conv:     1 if the algorithm converges, 0 otherwise 
% calls 
% S=sbuild(5,[2.5 1.5 0],0,[],[]) 
%       S is a 5 by 5 correlation matrix with 3 eigenvalues equal to 
%       2.5, 1.5 and 0. Two eigenvalues randomly determined such that 
%       they sum up 5-(2.5+1.5)=1. 
% S=sbuild(5,[2.5 1.5 0],0,[1 2 .5;1 3 .5;2 4 -.5],[]) 
%       S is as above, but S12=0.5, S13=0.5 and S24=-.5 
  
% if the variances are not specified, they are fixed as ones 
if var==0, var=ones(1,K); end 
  
if size(S0)==[0 0], 
  S=cov(rand(K+1,K)); 
else 
  S=S0; 
end 
ifixcov=[]; fixcov=[]; 
if size(co,1)>0, 
  for i=1:size(co,1); 
    ifixcov=[ifixcov (co(i,2)-1)*K+co(i,1) (co(i,1)-1)*K+co(i,2)]; 
    fixcov=[fixcov co(i,3) co(i,3)]; 
  end 
end 
  
TV=sum(var); 
e1=sort(eig_val(find(eig_val~=0)),'descend'); 
ne1=size(e1,2);ve1=sum(e1); 
RV=TV-ve1; 
if RV<0, 
  error('Fixed eigenvalues cannot sum up more than the variances'); 
end 
ne3=size(eig_val(find(eig_val==0)),2); 
  
ne2=K-ne1-ne3; 
  
alea=rand(1,ne2); 
e2=sort(RV/sum(alea)*alea,'descend'); 
  
[e ie]=sort([e1 e2],'descend'); 
 
conv=0;It=0;Tol=1e-10;OKeig=1; 
 
while 1, 
  It=It+1; 
  if It>=5000, break, end 
  [v,d]=svd(S); 
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  v=v(:,1:ne1+ne2);  % STEP 1 
  d=diag(d)'; 
  d=d(1:ne1+ne2);   
  
  dalea=d(ie(ne1+1:ne1+ne2)); 
  dalea=dalea*RV/sum(dalea); 
  [e ie]=sort([e1 dalea],'descend'); 
   
  S=v*diag(e)*v';     % STEP 2 
  S=rescale(S,var);   % STEP 3 re-scale S 
  S(ifixcov)=fixcov;  % STEP 4 fix covariances 
  [v d]=eig(S); 
  d=abs(d);           % STEP 5 avoids negative eigenvalues 
  S=v*d*v'; 
  S=rescale(S,var); 
   
  % test for covariances 
  OKcov=1; 
  if size(fixcov,1)>0 && max((S(ifixcov)-fixcov).^2)>Tol, OKcov=0; end 
   
  % test for eigenvalues 
  OKeig=0; 
  if ne1+ne3>0, 
    OKeig=zeros(1,ne1+ne3); ei=diag(d); 
    for i=1:ne1+ne3, 
      for j=1:K, 
        if (ei(j)-eig_val(i))^2<Tol && OKeig(i)==0, 
          OKeig(i)=1; ei(j)=-1; 
        end 
      end 
    end 
  end 
  
  % check for convergence 
  if sum(OKeig)+OKcov==ne1+ne3+1, conv=1;break;end 
end 
 
if size(fixcov,1)>0 && OKcov==0, 
  warning('fail in matching the fixed covariances'); 
end 
if ne1+ne3>0 && sum(OKeig)~=ne1+ne3, 
  warning('fail in matching the fixed eigenvalues'); 
end 
   
function S=rescale(S,var) 
K=size(S,1); 
for i=1:K-1 
  for j=i+1:K, 
    S(i,j)=S(i,j)*sqrt(var(i)*var(j)/(S(i,i)*S(j,j))); S(j,i)=S(i,j); 
  end 
end 
for i=1:K, S(i,i)=var(i); end 
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